

Fiche technique 16NC6 Désignation

Norme AFNOR: 16NC6

Norme EN : 16NiCrMo13

O Norme DIN: 1.6523

Norme AISI: 3310 (proche)

Description

L'acier 16NC6 est un acier faiblement allié au nickel, chrome et molybdène. Il est principalement utilisé pour les pièces mécaniques nécessitant une très haute résistance à l'usure après traitement de cémentation, tout en conservant une bonne ténacité à cœur. Il est adapté aux engrenages, arbres, pignons et composants soumis à des charges dynamiques élevées.

Composition chimique

Propriété	Valeur
Carbone (C)	0,14 - 0,19
Silicium (Si)	0,10 - 0,40
Manganèse (Mn)	0,40 - 0,70
Nickel (Ni)	1,40 - 1,70
Chrome (Cr)	1,40 - 1,70
Molybdène (Mo)	0,20 - 0,30
Phosphore (P)	≤ 0,035
Soufre (S)	≤ 0,035

Propriétés mécaniques

Propriété	Valeur
Dureté (HB)	~150 - 190 HB
Résistance à la traction (Rm)	600 - 850 Mpa
Limite d'élasticité (Re)	350 - 500 Mpa
Allongement (A5)	10 - 14 %
Résilience (KV)	> 35 J (température ambiante)

Propriétés physiques

Propriété	Valeur
Densité	7 850 kg/m³
Module d'élasticité	210 000 MPa
Conductivité thermique	~46 W/(m·K)
Température de fusion	~1 460°C

Traitements thermiques

Océmentation: 880-940°C, enrichissement en carbone

1 Trempe : 780-820°C, à l'huile

Revenu : 150-200°C pour stabiliser les structures

Traitements de surface

Cémentation : amélioration de la résistance à l'usure

Nitruration : possible pour accroître la dureté superficielle

Soudabilité

Bonne, nécessite un préchauffage léger (150-250°C) pour éviter les fissures lors de soudures importantes

Applications courantes

- Automobile : engrenages, arbres, pignons
- Aéronautique : composants de transmission
- Mécanique générale : axes, arbres soumis à fortes charges

Propriétés et avantages

- Très bonne résistance à l'usure après cémentation
- Bonne ténacité à cœur
- Bonne aptitude aux traitements thermiques
- Résistance aux charges dynamiques