

# Fiche technique 310 Désignation

Norme AFNOR: Z15CN25-20

**O** Norme EN: 1.4845

Norme DIN : X15CrNi25-20

Norme AISI : 310

## **Description**

L'inox 310 est un acier inoxydable austénitique fortement allié, conçu pour résister aux températures élevées et aux atmosphères oxydantes. Il offre une excellente résistance à l'oxydation jusqu'à 1 100 °C en usage continu et supporte des pointes jusqu'à 1 150 °C en atmosphère non réductrice. Il est également résistant à la corrosion modérée, notamment en milieu sulfurique oxydant. Non magnétique à l'état recuit, l'inox 310 est utilisé principalement dans les applications à haute température, comme les fours industriels ou les échangeurs thermiques.

## **Composition chimique**

| Propriété      | Valeur        |
|----------------|---------------|
| Carbone (C)    | ≤ 0,20 %      |
| Silicium (Si)  | ≤ 1,50 %      |
| Manganèse (Mn) | ≤ 2,00 %      |
| Phosphore (P)  | ≤ 0,045 %     |
| Soufre (S)     | ≤ 0,030 %     |
| Chrome (Cr)    | 24,0 - 26,0 % |
| Nickel (Ni)    | 19,0 - 22,0 % |



| Fer (Fe) | complément |
|----------|------------|
|          |            |

# Propriétés mécaniques

| Propriété                     | Valeur    |
|-------------------------------|-----------|
| Dureté (HB)                   | ≤ 225     |
| Résistance à la traction (Rm) | ≥ 520 MPa |
| Limite d'élasticité (Re)      | ≥ 210 MPa |
| Allongement (A%)              | ≥ 40 %    |
| Résilience (KCV)              | bonne     |

# Propriétés physiques

| Propriété               | Valeur            |
|-------------------------|-------------------|
| Densité                 | ~7 900 kg/m³      |
| Module d'élasticité     | ~200 000 MPa      |
| Conductivité thermique  | ~14,2 W/(m·K)     |
| Température de fusion   | ~1 400 - 1 450 °C |
| Dilatation thermique    | ~15,9 µm/m·K      |
| Conductivité électrique | ~2,0 % IACS       |

# **Traitements thermiques**

Recuit : 1 040 - 1 150 °C suivi d'un refroidissement rapide

Trempe / revenu : non applicable

#### **Traitements de surface**



- O Décapage et passivation : pour restaurer la couche passive
- Polissage, brossage, microbillage : selon finition souhaitée
- Revêtements : généralement inutiles

#### Soudabilité

Bonne, mais nécessité de limiter l'apport thermique pour éviter la fragilisation à chaud ; possible formation de carbures à haute température

## **Applications courantes**

- **O** Fours industriels : gaines, chambres, rails
- lndustrie chimique : échangeurs thermiques, tubes de réacteurs
- O Chaudronnerie haute température : brûleurs, déflecteurs, pièces de four
- Traitement thermique des métaux : supports, paniers, outillages

# Propriétés et avantages

- Excellente tenue à l'oxydation à haute température
- Bonne résistance à la corrosion en milieu oxydant
- Stabilité structurelle en ambiance chaude
- Bonne résistance au fluage
- Acier idéal pour les atmosphères extrêmes