

Fiche technique 40CMD8 Désignation

Norme AFNOR: 40CMD8

Norme EN: 34CrMo4

Norme DIN : 1.7220

Norme AISI: 4135

Description

L'acier 40CMD8 est un acier allié au chrome et au molybdène, utilisé pour les pièces mécaniques fortement sollicitées nécessitant une bonne résistance mécanique et une excellente ténacité. Il offre une bonne trempabilité et une bonne aptitude au traitement thermique, ce qui en fait un choix fréquent pour les arbres, axes, pièces de transmission et composants moteurs.

Composition chimique

Propriété	Valeur
Carbone (C)	0,36 - 0,44
Silicium (Si)	0,10 - 0,40
Manganèse (Mn)	0,50 - 0,80
Chrome (Cr)	0,80 - 1,10
Molybdène (Mo)	0,15 - 0,25
Phosphore (P)	≤ 0,035
Soufre (S)	≤ 0,035

Propriétés mécaniques

Propriété	Valeur
Dureté (HB)	~250 - 320 (après traitement thermique)
Résistance à la traction (Rm)	900 - 1100 MPa
Limite d'élasticité (Re)	700 – 900 MPa
Allongement (A%)	12 - 16 %
Résilience (KCV)	> 35 J

Propriétés physiques

Propriété	Valeur
Densité	7 850 kg/m³
Module d'élasticité	210 000 MPa
Conductivité thermique	~43 W/(m·K)
Température de fusion	~1 460°C

Traitements thermiques

Trempe : 830-860°C, à l'huile

Revenu : 540-680°C selon propriété souhaitée

Normalisation possible : à 860-890°C pour homogénéisation

Traitements de surface

Cémentation : rarement utilisée

Nitruration : possible pour amélioration de la résistance à l'usure

Soudabilité

Moyenne, nécessite un préchauffage (~200°C) et un traitement thermique post-soudage

Applications courantes

- Mécanique générale : arbres, axes, engrenages sollicités
- Automobile : arbres de transmission
- Machines industrielles : pièces soumises à haute charge

Propriétés et avantages

- Bonne résistance mécanique
- Bonne ténacité
- Bonne aptitude au traitement thermique
- **l** Bonne trempabilité