

Fiche technique 410 Désignation

Norme AFNOR: Z12C13

O Norme EN: 1.4006

Norme DIN: X12Cr13

Norme AISI: 410

Description

Le 410 est un acier inoxydable martensitique contenant environ 13 % de chrome. Il présente une bonne résistance mécanique, une dureté élevée après traitement thermique et une résistance modérée à la corrosion. Il est magnétique et bien adapté aux applications mécaniques, outillages ou pièces exposées à l'usure et à des ambiances faiblement corrosives.

Composition chimique

Propriété	Valeur
Carbone (C)	0,08 - 0,15 %
Silicium (Si)	≤ 1,00 %
Manganèse (Mn)	≤ 1,00 %
Phosphore (P)	≤ 0,040 %
Soufre (S)	≤ 0,030 %
Chrome (Cr)	11,5 - 13,5 %
Nickel (Ni)	≤ 0,75 %
Fer (Fe)	complément

Propriétés mécaniques

Propriété	Valeur
Dureté (HB)	170 – 245 (à l'état recuit)
Résistance à la traction (Rm)	500 - 700 MPa (recuit) / jusqu'à 1 300 MPa
Limite d'élasticité (Re)	300 - 500 MPa
Allongement (A%)	15 - 20 % (recuit)
Résilience (KCV)	faible à moyenne

Propriétés physiques

Propriété	Valeur
Densité	~7 700 kg/m³
Module d'élasticité	~200 000 MPa
Conductivité thermique	~25 W/(m·K)
Température de fusion	~1 460 °C
Dilatation thermique	~10,2 µm/m·K
Conductivité électrique	~3 % IACS

Traitements thermiques

Trempe : 980 - 1 050 °C suivi d'un revenu entre 150 - 370 °C

Revenu : Un revenu entre 300-350 °C est souvent un bon compromis

Traitements de surface

Polissage : améliore l'état de surface et la résistance à la corrosion

Revêtements : Nitruration, chromage dur

Soudabilité

Moyenne, risque de fissuration ; préchauffage et traitement post-soudure recommandé

Applications courantes

- Mécanique : arbres, axes, pièces de friction
- Outillage: couteaux industriels, lames, outils de coupe
- Aéronautique : fixations, pièces à haute dureté
- Équipements : composants soumis à l'usure

Propriétés et avantages

- Bonne trempabilité et dureté élevée
- Bonne résistance mécanique
- Résistance modérée à la corrosion
- Adapté à l'usinage après trempe
- Occit modéré pour des pièces techniques