

Fiche technique 420 Désignation

Norme AFNOR: Z20C13

O Norme EN: 1.4021

Norme DIN: X20Cr13

Norme AISI: 420

Description

L'inox 420 est un acier inoxydable martensitique à haute teneur en carbone. Il est conçu pour être trempé afin d'atteindre une dureté élevée tout en conservant une résistance correcte à la corrosion dans les environnements peu agressifs. Il est magnétique, durcissable, et très utilisé dans la coutellerie, les outils coupants et les pièces soumises à l'usure.

Composition chimique

Propriété	Valeur
Carbone (C)	0,15 - 0,40 %
Silicium (Si)	≤ 1,00 %
Manganèse (Mn)	≤ 1,00 %
Phosphore (P)	≤ 0,040 %
Soufre (S)	≤ 0,030 %
Chrome (Cr)	12,0 - 14,0 %
Nickel (Ni)	≤ 0,75 %
Fer (Fe)	complément

Propriétés mécaniques

Propriété	Valeur
Dureté (HB)	200 – 240 (recuit) / jusqu'à 500 HB (trempé
Résistance à la traction (Rm)	700 - 950 MPa (recuit) / jusqu'à 1 400 MPa
Limite d'élasticité (Re)	400 - 600 MPa
Allongement (A%)	10 - 20 % (recuit)
Résilience (KCV)	moyenne à faible

Propriétés physiques

Propriété	Valeur
Densité	~7 700 kg/m³
Module d'élasticité	~200 000 MPa
Conductivité thermique	~25 W/(m·K)
Température de fusion	~1 460 °C
Dilatation thermique	~10,0 µm/m·K
Conductivité électrique	~3 % IACS

Traitements thermiques

Trempe : 980 - 1 050 °C, refroidissement à l'air ou à l'huile

Revenu : 150 - 400 °C selon la dureté recherchée

Traitements de surface

Polissage miroir : courant en coutellerie ou pour pièces décoratives

Revêtements : nitruration, passivation ou chromage selon l'usage

Soudabilité

Délicate, nécessite un préchauffage, un métal d'apport adapté et un traitement post-soudure pour éviter les fissurations

Applications courantes

- Ocutellerie : lames, ciseaux, instruments médicaux
- Outillage : forets, burins, poinçons
- 👰 Industrie : pièces mécaniques soumises à l'usure
- Automobile : composants formés et durcis

Propriétés et avantages

- 🧑 Très bonne trempabilité
- Dureté élevée après traitement
- Bonne résistance à l'usure
- Résistance correcte à la corrosion
- **l** Bonne aptitude au polissage