

Fiche technique 55NCDV7 Désignation

Norme AFNOR: 55NCDV7

l Norme EN : 1.2714

Norme DIN : 1.2714

Norme AISI : L6

Description

L'acier 55NCDV7 est un acier à outils à chaud allié au nickel, chrome, molybdène et vanadium. Il offre une excellente ténacité, une bonne résistance à la fissuration thermique et une grande aptitude au traitement thermique. Il est couramment utilisé pour des matrices de forge, des moules d'injection, des arbres de marteaux pilons et d'autres pièces fortement sollicitées à chaud.

Composition chimique

Propriété	Valeur
Carbone (C)	0,50 - 0,60
Silicium (Si)	0,10 - 0,40
Manganèse (Mn)	0,45 - 0,65
Chrome (Cr)	0,90 - 1,20
Molybdène (Mo)	0,45 - 0,60
Phosphore (P)	≤ 0,030
Vanadium (V)	0,07 - 0,15
Soufre (S)	≤ 0,030

Nickel (Ni) 1,50 – 1,80

Propriétés mécaniques

Propriété	Valeur
Dureté (HB)	~250 - 290 (état recuit)
Dureté après trempe	48 - 54 HRC (jusqu'à 58 HRC pour a
Résistance à la traction (Rm)	1000 - 1300 MPa
Limite d'élasticité (Re)	800 - 1000 MPa
Allongement (A%)	12 - 16 %
Résilience (KCV)	> 35 J

Propriétés physiques

Propriété	Valeur
Densité	7 850 kg/m³
Module d'élasticité	210 000 MPa
Conductivité thermique	~34 W/(m·K)
Température de fusion	~1 460°C

Traitements thermiques

🗑 Trempe : 850-880°C, à l'huile ou à l'air

Revenu : 500-650°C selon dureté visée

Recuit : 650–700°C, refroidissement lent

Traitements de surface

- Nitruration : pour améliorer la tenue à l'usure
- Revêtement PVD : possible pour outillage de précision

Soudabilité

Ø Bonne avec un préchauffage (250-300°C) et un traitement thermique après soudage

Applications courantes

- **O** Forge: matrices, mandrins, enclumes
- Plasturgie : moules d'injection sous pression
- O Industrie lourde : marteaux pilons, outils de presse

Propriétés et avantages

- Très bonne ténacité
- Bonne résistance thermique
- Stabilité dimensionnelle après revenu
- Excellente aptitude à l'usinage et au polissage