

Fiche technique 90MCV8 Désignation

Norme AFNOR: 90MCV8

Norme EN: 90MnCrV8

Norme DIN : 1.2842

Norme AISI : 02

Description

L'acier 90MCV8 est un acier à outils pour travail à froid à haute teneur en carbone, allié au manganèse, chrome et vanadium. Il est utilisé pour la fabrication d'outils de coupe, de poinçons, de lames et de matrices, grâce à sa très bonne stabilité dimensionnelle, sa bonne aptitude au traitement thermique et sa résistance élevée à l'usure.

Composition chimique

Propriété	Valeur
Carbone (C)	0,85 - 0,95
Silicium (Si)	0,10 - 0,40
Manganèse (Mn)	1,80 - 2,20
Chrome (Cr)	0,30 - 0,50
Vanadium (v)	0,05 - 0,15
Phosphore (P)	≤ 0,030
Soufre (S)	≤ 0,030

Propriétés mécaniques

Propriété	Valeur
Dureté (HB)	~220 - 260 (état recuit)
Dureté après trempe	58 - 62 HRC
Allongement (A%)	faible
Résilience (KCV)	faible à moyenne ~10-20 J (selon traitement)

Propriétés physiques

Propriété	Valeur
Densité	7 800 kg/m³
Module d'élasticité	210 000 MPa
Conductivité thermique	~25 W/(m·K)
Température de fusion	~1 460°C

Traitements thermiques

Trempe : 780-820°C, à l'huile

Revenu : 180-300°C selon dureté visée

Recuit : 720-750°C, refroidissement lent

Traitements de surface

OPPOISSAGE: courant pour outils tranchants

Nitruration : possible pour renforcer la résistance à l'usure

Très difficile, non recommandé sans précautions spéciales

Applications courantes

Outillage: matrices, lames, poinçons

Mécanique fine : pièces de précision

🧑 Métallurgie : outils à froid

Propriétés et avantages

- Très bonne stabilité dimensionnelle
- Bonne trempabilité
- Haute dureté après traitement thermique
- Bonne usinabilité avant traitement, mais nécessite précautions après trempe (dureté > 60 HRC)