

Fiche technique PEEK Désignation

- PEEK :Polyétheréthercétone :Victrex® PEEK :Ketron® PEEK :
- Thermoplastique haute performance :

Description

Le PEEK est un polymère hautes performances de la famille des polyaryléthercétones. Il se distingue par une résistance mécanique et thermique très élevée, une excellente tenue chimique, une faible inflammabilité et une grande stabilité dimensionnelle. Il est utilisé dans des environnements extrêmes, notamment en aéronautique, médical, chimie, énergie ou mécanique de précision.

Composition chimique

Propriété	Valeur
-	

Propriétés mécaniques

Propriété	Valeur
Dureté (Shore D)	~85 - 90
Résistance à la traction	90 – 100 MPa (non chargé)
Module d'élasticité	3 500 - 4 000 MPa
Allongement à la rupture	20 - 40 %
Résilience (Charpy)	très bonne, stable en température

Propriétés physiques

Propriété	Valeur
Densité	~1,30 - 1,32 g/cm³
Température de fusion	~343 °C
Température maximale d'utilisation	~250 - 260 °C (continu)
Dilatation thermique	~45 - 55 μm/m·K
Absorption d'eau (saturée)	≤ 0,5 %

Traitements thermiques

Traitements de surface

O Usinage : excellente stabilité, surface propre et rigide

Peinture / collage : possible avec un traitement spécifique

Soudabilité

Soudable par fusion ou laser sur géométries simples ; moins aisé que le PP ou le PA

Applications courantes

- Aéronautique : bagues, connecteurs, fixations, isolants thermiques
- Médical : implants, instruments chirurgicaux, composants stérilisables
- Ohimie / énergie : pièces en contact avec fluides chauds ou acides forts
- Mécanique : paliers, engrenages, glissières de haute performance

Propriétés et avantages

- Excellente tenue thermique jusqu'à 260 °C
- Très bonne résistance mécanique et au fluage
- Inertie chimique élevée (acides, bases, solvants)
- Faible inflammabilité (UL94 V-0)
- Très bonne tenue au rayonnement et aux cycles stériles
- Ompatible contact alimentaire (versions certifiées) ; faible dégazage en vide poussé