

Fiche technique Uranus Désignation

Norme AFNOR : Uranus B6 / S1 / S3 (selon nuance)

Description

L'Uranus est une marque française déposée désignant plusieurs aciers inoxydables hautes performances produits par Industeel (ArcelorMittal). Ces aciers, de type austénitique ou super-duplex selon la nuance (ex : B6, S1, S3), sont conçus pour offrir une résistance exceptionnelle à la corrosion, notamment en milieux acides, chlorés ou à haute température. Ils sont utilisés dans les secteurs chimique, nucléaire, pharmaceutique ou marin.

Composition chimique

Propriété	Valeur
(exemple Uranus B6 – équivalent 904L) Carbone (C)	≤ 0,020 %
Silicium (Si)	≤ 0,50 %
Manganèse (Mn)	≤ 2,00 %
Phosphore (P)	≤ 0,035 %
Soufre (S)	≤ 0,015 %
Chrome (Cr)	19,0 - 21,0 %
Nickel (Ni)	23,0 - 25,0 %
Molybdène (Mo)	4,0 - 5,0 %
Cuivre (Cu)	1,0 - 2,0 %
Fer (Fe)	complément

Propriétés mécaniques

Propriété	Valeur
Dureté (HB)	≤ 220
Résistance à la traction (Rm)	490 - 710 MPa
Limite d'élasticité (Re)	≥ 220 MPa
Allongement (A%)	≥ 35 %
Résilience (KCV)	très bonne

Propriétés physiques

Propriété	Valeur
Densité	~8 000 kg/m³
Module d'élasticité	~200 000 MPa
Conductivité thermique	~10 - 12 W/(m·K)
Température de fusion	~1 320 - 1 390 °C
Dilatation thermique	~15 µm/m⋅K
Conductivité électrique	~1,5 % IACS

Traitements thermiques

Recuit : 1 050 - 1 150 °C suivi d'un refroidissement rapide

Revenu : non applicable

Traitements de surface

Décapage : essentiel après soudage pour restaurer la passivation

Polissage : possible pour améliorer la tenue en milieu chloré

Soudabilité

Très bonne avec un métal d'apport adapté mais pas de traitement thermique post-soudure nécessaire

Applications courantes

- Ochimie : colonnes, réacteurs, échangeurs en acides forts
- Nucléaire : circuits d'eau borée ou déminéralisée, tuyauteries sensibles
- Pharmaceutique: cuves, circuits propres, équipements process
- Offshore : composants résistants aux chlorures et à l'eau de mer

Propriétés et avantages

- Excellente résistance à la corrosion acide et aux chlorures
- Très bonne tenue mécanique et ductilité
- Grande stabilité en température
- Bonne soudabilité sans traitement postérieur
- O Longévité en milieux extrêmes