

Fiche technique XC38 Désignation

Norme AFNOR: XC38

Norme EN: C35E

Norme DIN : 1.1181

Norme AISI: 1035

Description

L'acier XC38 est un acier au carbone non allié utilisé pour la fabrication de pièces mécaniques de résistance moyenne. Il est apprécié pour son bon compromis entre résistance, usinabilité et coût. Cet acier est généralement utilisé dans les arbres, axes, boulonnerie, pièces de machines et composants soumis à des efforts modérés.

Composition chimique

Propriété	Valeur
Carbone (C)	0,35 - 0,42
Silicium (Si)	0,10 - 0,40
Manganèse (Mn)	0,50 - 0,80
Phosphore (P)	≤ 0,035
Soufre (S)	≤ 0,035

Propriétés mécaniques

Propriété	Valeur
Dureté (HB)	~140 - 190 (à l'état recuit)
Résistance à la traction (Rm)	500 - 700 MPa (après traitement thermique)
Limite d'élasticité (Re)	~300 - 400 MPa (état normalisé)
Allongement (A%)	16 - 20 %
Résilience (KCV)	> 27 J

Propriétés physiques

Propriété	Valeur
Densité	7 850 kg/m³
Module d'élasticité	210 000 MPa
Conductivité thermique	~48 W/(m·K)
Température de fusion	~1 480°C

Traitements thermiques

Trempe : 820-860°C, à l'huile ou à l'eau

Revenu : 540-680°C selon propriétés mécaniques visées

Normalisation: 840-880°C pour homogénéisation des grains

Traitements de surface

O Cémentation : possible pour augmentation de la résistance à l'usure

Nitruration : possible selon applications spécifiques

Soudabilité

Bonne pour les faibles sections, précautions nécessaires pour les sections épaisses

Applications courantes

- Mécanique générale : arbres, axes, pièces de transmission
- Automobile : éléments de liaison mécanique
- Industrie : boulonnerie, fixations

Propriétés et avantages

- Bon compromis résistance/ductilité
- Bonne aptitude au traitement thermique
- Bonne usinabilité
- **②** Coût modéré