

Fiche technique Z38CDV5 Désignation

Norme AFNOR: Z38CDV5

Norme EN: X37CrMoV5-1

Norme DIN : 1.2343

Norme AISI : H11

Description

L'acier Z38CDV5 est un acier allié au chrome, molybdène et vanadium, conçu pour les outils de travail à chaud. Il offre une excellente résistance à la chaleur, une bonne ténacité et une grande résistance à la fissuration thermique. Il est couramment utilisé pour la fabrication de matrices de forge à chaud, de moules sous pression et d'outils pour extrusion.

Composition chimique

Propriété	Valeur
Carbone (C)	0,35 - 0,42
Silicium (Si)	0,80 - 1,20
Manganèse (Mn)	0,30 - 0,50
Chrome (Cr)	4,80 - 5,50
Molybdène (Mo)	1,00 - 1,30
Vanadium (V)	0,3 - 0,50
Phosphore (P)	≤ 0,030
Soufre (S)	≤ 0,030

Propriétés mécaniques

Propriété	Valeur
Dureté (HB)	~220 - 260 (état recuit)
Dureté après trempe	48 - 52 HRC
Résistance à la traction (Rm)	1000 - 1300 MPa
Limite d'élasticité (Re)	~850 MPa
Allongement (A%)	12 - 15 %
Résilience (KCV)	> 35 J (selon traitement)

Propriétés physiques

Propriété	Valeur
Densité	7 800 kg/m³
Module d'élasticité	210 000 MPa
Conductivité thermique	~27 W/(m·K)
Température de fusion	~1 460°C

Traitements thermiques

🎯 Trempe : 1000-1030°C, à l'air ou bain de sel

Revenu : 550-650°C, double revenu recommandé

Recuit : 750-800°C, refroidissement lent

Traitements de surface

Nitruration : amélioration de la résistance à l'usure et à la chaleur

PVD : possible pour outillage à haute précision

Soudabilité

Très difficile, non recommandé sans précautions spéciales

Applications courantes

- **O** Forge à chaud : matrices, poinçons, mandrins
- Onjection sous pression: moules aluminium, zamak
- Extrusion : outils de filage

Propriétés et avantages

- Très bonne tenue à chaud
- Bonne résistance à la fissuration thermique
- Excellente ténacité à chaud
- Bonne stabilité dimensionnelle