

Fiche technique Z8CN25 Désignation

🙆 Norme AFNOR : Z8CN25.20

Norme EN : 1.4462

Norme DIN: X2CrNiMoN25-7-4

Description

Le Z8CN25.20 est un acier inoxydable austéno-ferritique (duplex) fortement allié au chrome et au nickel, offrant une excellente résistance à la corrosion, y compris en milieu chloré ou acide, ainsi qu'une très bonne résistance mécanique. Il est utilisé dans les environnements très agressifs, notamment en chimie, offshore, dessalement et industrie navale.

Composition chimique

Propriété	Valeur
Carbone (C)	≤ 0,03 %
Silicium (Si)	≤ 1,00 %
Manganèse (Mn)	≤ 2,00 %
Phosphore (P)	≤ 0,035 %
Soufre (S)	≤ 0,020 %
Chrome (Cr)	24,0 - 26,0 %
Nickel (Ni)	19,0 - 22,0 %
Molybdène (Mo)	≤ 2,0 %
Azote (N)	0,15 - 0,25 %

Fer (Fe) complément

Propriétés mécaniques

Propriété	Valeur
Dureté (HB)	≤ 270
Résistance à la traction (Rm)	650 - 850 MPa
Limite d'élasticité (Re)	≥ 450 MPa
Allongement (A%)	≥ 25 %
Résilience (KCV)	bonne, même à basse température

Propriétés physiques

Propriété	Valeur
Densité	~7 900 kg/m³
Module d'élasticité	~200 000 MPa
Conductivité thermique	~14 W/(m·K)
Température de fusion	~1 330 - 1 400 °C
Dilatation thermique	~15 µm/m⋅K
Conductivité électrique	~1,3 % IACS

Traitements thermiques

Recuit : 1 050 - 1 100 °C suivi d'un refroidissement rapide

Revenu : non applicable

Traitements de surface

- O Décapage : pour restaurer la couche passive après usinage ou soudage
- Polissage : recommandé pour applications en milieu chloré

Soudabilité

Bonne, mais nécessite un contrôle strict des paramètres pour éviter la formation de phases intermétalliques ; pas de traitement thermique après soudure

Applications courantes

- Offshore: structures immergées, échangeurs, tuyauteries
- Ohimie: réacteurs, cuves, gaines, équipements sous pression
- O Dessalement : circuits d'eau de mer, évaporateurs
- Marine: pompes, vannes, accastillage lourd

Propriétés et avantages

- Excellente résistance à la corrosion en milieu agressif
- Très bonne tenue mécanique
- Bon comportement à la fatigue et à la fissuration sous contrainte
- Bonne tenue en milieu chloré et acide
- Résistance à la corrosion intergranulaire